If it's not what You are looking for type in the equation solver your own equation and let us solve it.
26x^2+16x-64=0
a = 26; b = 16; c = -64;
Δ = b2-4ac
Δ = 162-4·26·(-64)
Δ = 6912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6912}=\sqrt{2304*3}=\sqrt{2304}*\sqrt{3}=48\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-48\sqrt{3}}{2*26}=\frac{-16-48\sqrt{3}}{52} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+48\sqrt{3}}{2*26}=\frac{-16+48\sqrt{3}}{52} $
| 83=76+28/u | | 40=8b+8 | | 14a+20=8a-22 | | 65-(4x+12)=4(x+2)+x | | -8-11=7x-3 | | y=(1/3)10+2 | | 8+2p=12 | | f+ 1/2= 8 | | -7n+16=-5n-18 | | 2x-8+11=x=10 | | 66+t/5=76 | | 23x2=46 | | 7+2k=11 | | 3-8a=5-7a | | 2=3h-2 | | x2–7x–18=0 | | 7=3j+1 | | 3y+6+4-7=-8 | | 85=11u-25 | | 23=7-(3-4t) | | 20k+8k+1=180 | | -4.5n+3.2=-5.93 | | 6y+6=-2y-9 | | ?+2x+2=16x+11 | | -4(0.18x+1.05=) | | 114=4+5(5n+2) | | 2q3-5q2+1000=0 | | 192=6(2+5n) | | -5(3x-7)=2(x-40)-21 | | 3t=5.3 | | 49x^2-212x+120=0 | | r+5+r=7 |